DNA repair pathway choice is influenced by the health of Drosophila melanogaster.
نویسندگان
چکیده
In nature, individuals vary tremendously in condition and this may be an important source of variation in mutation rate. Condition is likely to affect cell state and thereby impact the amount of DNA damage sustained and/or the way it is repaired. Here, we focus on DNA repair. If low-condition individuals are less capable of devoting the same level of resources to accurate repair, they may suffer higher mutation rates. However, repair decisions are also governed by various aspects of cell physiology, which may render the prediction that "higher-condition individuals use better repair mechanisms" too simplistic. We use a larval diet manipulation in Drosophila melanogaster to create high- and low-condition individuals and then contrast their relative usage of three repair pathways [homologous recombination (HR), single-strand annealing (SSA), and nonhomologous end joining (NHEJ)] that differ in their mechanistic requirements and their mutational consequences. We find that low-condition flies are more likely than high-condition flies to use the most conservative of these three repair pathways, suggesting that physiological constraints on repair pathway usage may be more important than energetic costs. We also show that the repair differences between high- and low-condition flies resemble those between young and old flies, suggesting the underlying mechanisms may be similar. Finally, we observe that the effect of larval diet on adult repair increases as flies age, indicating that developmental differences early in life can have long-lasting consequences.
منابع مشابه
Double-Strand Break Repair Assays Determine Pathway Choice and Structure of Gene Conversion Events in Drosophila melanogaster
Double-strand breaks (DSBs) must be accurately and efficiently repaired to maintain genome integrity. Depending on the organism receiving the break, the genomic location of the DSB, and the cell-cycle phase in which it occurs, a DSB can be repaired by homologous recombination (HR), nonhomologous end-joining (NHEJ), or single-strand annealing (SSA). Two novel DSB repair assays were developed to ...
متن کاملAconitase and Developmental EndPointsasEarly IndicatorsofCellularToxicity Induced by Xenobiotics in Drosophila Melanogaster
Background: In this study, the toxicity of the different xenobiotics was tested on the fruit fly Drosophila melanogaster model system. Methods: Fly larvae were raised on food supplemented with xenobioticsat different concentrations (sodium nitroprusside (0.1-1.5 mM), S-nitrosoglutathione (0.5-4 mM), and potassium ferrocyanide (1 mM)). Emergence of flies, food intake by larvae, and pupation h...
متن کاملToxicological Evaluation of a New Lepidopteran Insecticide, Flubendiamide, in Non-Target Drosophila melanogaster Meigen (Diptera: Drosophilidae)
Background: Flubendiamide, comparatively a new pesticide designed to eradicate lepidopteran insect pests is known to have low risk to birds, mammals, fish, algae, honey bees, non-target arthropods, earthworms, soil macro- and micro-organisms, non-target plants as well as sewage treatment organisms; however, the risk assessment for aquatic invertebrates from metabolite could not be finalized wit...
متن کاملConcentration dependent effect of morphine, aspirin, capsaicin and chili pepper hydro alcoholic extract on thermal and chemical pain model in fruit fly (Drosophila melanogaster)
Introduction: Pain research using animal models is related to ethical concerns, so invertebrates and insects have been recommended by researchers. In the present study, the nociceptive and antinociceptive effects of capsaicin, aspirin, morphine and chili extract were examined using fruit fly (Drosophila melanogaster) as an alternative for rodent pain model. Methods: Stage 3 of larvae and ad...
متن کاملHomology directed repair is unaffected by the absence of siRNAs in Drosophila melanogaster
Small interfering RNAs (siRNAs) defend the organism against harmful transcripts from exogenous (e.g. viral) or endogenous (e.g. transposons) sources. Recent publications describe the production of siRNAs induced by DNA double-strand breaks (DSB) in Neurospora crassa, Arabidopsis thaliana, Drosophila melanogaster and human cells, which suggests a conserved function. A current hypothesis is that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 192 2 شماره
صفحات -
تاریخ انتشار 2012